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Fluid transport in branched structures with temporary closures:
A model for quasistatic lung inflation
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We analyze the problem of fluid transport through a model system relevant to the inflation of a mammalian
lung, an asymmetric bifurcating structure containing random blockages that can be removed by the pressure of
the fluid itself. We obtain a comprehensive description of the fluid flow in terms of the topology of the structure
and the mechanisms which open the blockages. We show that when calculating averaged flow properties of the
fluid, the tree structure can be partitioned into a linear superposition of one-dimensional chains. In particular,
we relate the pressure-volunReV relationship of the fluid to the distributiol (n) of the generation number
n of the tree’s terminal branches, a structural property. We invert this relation to obtain a statistical description
of the underlying branching structure of the lung, by analyzing experimental pressure-volume data from dog
lungs. Thell(n) extracted from the experimentBtV data agrees well with available data on lung branching
structure. Our general results are applicable to any physical system involving transport in bifurcating structures
with removable closures.
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[. INTRODUCTION the transpulmonary pressukeis slowly increased. As a re-
sult, a pressure difference builds across the closures which
The complex structure of biological systerfls-6] and  are exposed to the atmospheric pressure through the root of
transport processes that occur in thEfe-13 are topics of the tree. Each closure reopens when the pressure difference
much current interest, attracting researchers from engineefcross it reaches its critical opening threshdé,37. Since
ing [14—16, physics[17—20, and physiology[21-23. In the airways are arranged in a tree structure, opening one
this paper, we address the problem of forcing fluid througH?ranch is not possible until all branches connecting it to the
an asymmetrically branched structure with random closuref0t of the tree are open. If the threshold pressure of a daugh-

that can be removed by the pressure of the fluid. Such pro}€" Pranch is smaller than that of its parent, the daughter
opens simultaneously with the parent. This mechanism also

lems are often encountered during fluid flow in organ sys- . . :
tems where the pathways can be blocked, e.g., circulation Oq;_pplles to subsequent generations, leading to avalanches of

blood [21] and flow of air in the lund24,25. Unrestricted airway opening$38].

flow in these pathways is essential for proper physiological The process of airway opening via avalanches has been
: P Y _Proper physiologicay, ey for symmetric binary tree models. The volume of
function, and blockages lead to potentially lethal situations

inhal irV during inspiration, f full Il |
In spite of its critical application, the problem of fluid flow nhaled airV' during inspiration, for a fully collapsed lung,

. . : was found to follow a simple power law iR,
through collapsible bifurcating structures has only been mar- pep

ginally studied[26—29. Recently, we introduced a simple V(P)xPN, 1)

tree model to characterize the asymmetry of the lung airway

tree using pressure-volume curves during inflafid@]. Here ~ WhereN is the generation number of the terminal branches

we propose a general method to obtain analytical results fd26—28. Such pressure-volumeP¢V) relations are used to

tree structures and apply it to the process of lung inflation. M&asure lung function in clinical environments. However,
The primary function of the respiratory systems is to de-(N€ real lung is asymmetric, with many branches missing,

liver air to the air sacs, called alveoli, for gas exchangeVhich significantly distorts theP-V' curve from the ideal

Morphological data show that the mammalian lung consist

power-law behaviof30-32. It is thus important to deter-
of airways arranged hierarchically in an asymmetric binar;/mne how the properties of the system depend on the asym-
tree, the airway tree, with air sacs connected to the terminals

[31,32. Many peripheral airways of a diseased lung collapse !

|
during expiration as the internal air pressure and the tension :>|Liquid—>
of the elastic walls are insufficient to counter the surface | |
tension of the liquid lining[33—-39. The liquid forms a (a) Open Airway (b) Closed Airway

bridge or closuréFig. 1) which completely blocks the flow

of air, excluding a large number of alveoli from gas ex- FIG. 1. Section of an airway showirig) the film of liquid when
change[25]. During inspiration, the difference between the the airway is open, an) the liquid bridge blocking the flow of air
atmospheric pressure and the pressure surrounding the lunghen the airway is closed.
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metry of its underlying tree structure. Avalanches are further Q

complicated since the opening of an airway is accompanied Atmosphere
by an audible pressure wave called cradide-41], which P,

in turn can assist the opening of airways downstream. More-
over, the air sacs are elastic and the effect of their elasticity P.
on the P-V curve becomes significant near the end of the
inspiratory cycle, when the majority of air sacs have been
opened[27]. Although asymmetry, crackles, and elasticity
are important contributors to the shape of theV curve,
their effects are isolated to different regions and thus it is
possible to extract information about them by analyzing the

sameP-V curve.
We obtain experimentdP-V curves of isolated dog lung

lobes(Sec. ) and develop a model of the lung during ava- Sealed Chamber Pump
lanchelike airway openingSec. Il A). We show that when
calculating theP-V relationship, it is possible to partition the FIG. 2. Schematic diagram of the experimental setup. The lobe
complex bifurcating structure into a set of paths connectinds placed in a sealed chami@ressureP.) with the main bronchus

the root of the structure to the air sa@®ec. Il B). Conse- open to the atmospheric presstg. The air pressure in the cham-
quently, ber is slowly decreased using a vacuum pump which creates a pres-
sure differencéeP=P,—P..

V(P)=Vg(P)> I(M)T,(P), (2 by regording the chamber pressute with respect to atmo-
n spheric pressur®, using a Valydine MP-45 transducé&s0
cm H,0). The airflowQ is measured at the main bronchus

whereVg(P) is the elasticP-V relationship of the lungSec. ~ USINg @ screen pneumotachometesistance 5 cm 30/1/s)

Il), TI(n) is the distribution of terminals with generation &ttached to another Validyne MP-45 transdu@em H0).
numbern, andT",,(P) is the opening probability of an airway Pressure and airflow are both sampled at a rate of 80 Hz. The

of generatiom under the influence of avalanches and crack-PreSSUreP is increased to 30 cm 4O in 120 s. At this infla-
les (Sec. V). tion rate, the time to regain equilibrium after an airway opens

Using the analytic results of our models, we are able to fitS N€dligible compared to the total inflation time. The volume
the experimentaP-V data(Sec. \) and obtain the distribu- \(of inhaled air is calculated by integrati@with respect to
tion II(n), which is a key morphologic property of the air- 'M€:
way tree. Since experiments measuriRgv curves of an .
inflating lung are noninvasive, this method provides a way to V(t)= f Q(t")dt’. 3
study “microscopic” branching structures from “macro- 0
scopic” P-V data without the use of invasive techniques The measured-V curves are shown in Fig. 3. Although
[30]. We compared these results with known morphologicathe two lobes have slightly differet at maximumP, both
data on the lung structure. The agreement of our model witlturves show certain common features:
experimental data provides a better understanding of both the Region A(P<10 cmH0): As P increasesy increases
general problem of fluid flow through blocked pathways andonly slightly. At these pressures almost all air sacs are col-
the particular manifestation of this system in the case of théapsed and the slight increase\rris due to the opening of a
lung. small number of airways and their subsequent elastic expan-
sion.

Region B(10 cm HLO<P<20 cm H,0): Over this range
of P, V increases dramatically from near O to near saturation.

We determine experimentally tHe-V curves of two iso- [N this region, air sacs are recruited in avalanches giving rise
lated dog lung lobes, labelelandB. A cannula is inserted t0 the steep increase M
into the main bronchus and the lobe is degassed in a vacuum Region C(P>20 cm HO0): In this region, almost all air
chamber as described by Smith and Stame,nm, col- sacs are open and increases as a result of the elastic ex-
lapsing almost all the airways. The degassed lobes are placé@nsion of the opened air sacs. We fit this region using a
in an airtight chamber with the cannula attached to a meta$ingle exponential model for the-V relation for the elastic
tube that is led through the lid of the chamber, as shown irexpansion of the air sa¢d3—-43, whereVg(P), the elastic
Fig. 2. We inflate the lobes from the collapsed state to totavolume of the lung, is given by
Lsing a Suction pump. We measuré the wanspuimonary pres- Ve(P)=Vo(1-ae ), @
sure

IIl. EXPERIMENTAL DATA

where the parameteis,, a, andb were determined by fit-
ting experimental data fdP>20 cm H,O and are consistent
P=P,—P; with those previously obtainef@6].
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approximation is also valid for most of regid once the
Pressure (cm H>0) first few avalanches occur. We assume gV, and thus

FIG. 3. Experimentally determine@-V curves of two isolated V=~ Va OVer the entire range %, the approximation is more
dog lung lobesA (@) andB (O), obtained during inflation from ~accurate for higheP. If all air sacs are identical and each
collapsed state to total lobe capacity. The dashed lines sho@P€n air sac contributes an equal volume, the increasg in
asymptotic fits toVg(P) given by Eq.(4) with V,=327.3 ml,a  is due to the increase in the fraction of open air siags
=0.907, b=0.094/cmHO for lobe A and V,=377.1ml, a
=0.908, b= 0.075/cmHO for lobe B. f,~f,. (8

When all airways and air sacs in the lung are open, As P increases, more air sacs open and contribut¥.to
increases only due to elastic expansion and(Brdescribes  The increase irf, is not continuous, but occurs in steps of
the P-V curve. If only a fractionf, of the total volume is different sizes, corresponding to avalanches which recruit

open, theP-V curve can be written as varying numbers of contributing air sacs. The opening pres-
sure¢ of an air sac is defined as the pressure at which the air
V(P)=f,(P)Vg(P). (5) sac reopens. The distributiai( ¢) of opening pressures is

. _ an important measure of lung condition, often used to deter-
Thus, the volume fractio, of the open region of the lung mine the applied pressures during recruitment maneuvers

can be calculated as [47,48 and artificial ventilation49,50. When the pressure
is increased fronP by an amountdP, the increase in the

f(P)= V(P) 6) fraction of open air sacdf, is the fraction of air sacs with

v Ve(P)’ opening pressureshe[P,P+dP). Thus the distribution

¥($) can be estimated as
and is shown in Figs.(4) and 4b) for the lobesA andB.

The total volumeV is the sum of the volume contained in df, df,
the open air sacsy,, and the volume contained in the ‘/’(d’):ﬁ ~apP ' ©
opened airwaysbranchey V,,, P=4 P=4

using the approximation of Eq8). The obtained distribu-
tions are shown in Figs.(8 and 5b) for lobesA and B,

In regionA, V,~0 as nearly all air sacs are closed and therespecnvely. Similar distributions of opening pressures have

observed volumé&/~V,. In the fully open lung, regiorcC, been obtained using computed tomography].
when all air sacs are opeXi, is much greater tha¥,. This

V=Vp+V,. (7)

III. LUNG INFLATION MODEL

Lobe A Lobe B We now develop a model of the-V curve of an asym-
(a) (b) metrically branched tree during inflation. A tree is a mini-
mally connected graph with one and only one path between
any two pointg[52,53. The lack of redundant paths makes

=
=]

Volume fraction, f,

05 tree structures vulnerable to edge disruptions, since the re-
moval of any one edge affects a large number of paths, sig-
0.0 . : , nificantly affecting the connectivity of the structure. Al-
0 0 2 3 0 10 20 30 though this property is the primary cause of many

obstructive lung diseases, we can exploit the strong signature
of a collapsed airway on macroscopic measurables such as

FIG. 4. Volume fractiorf,,(P) of the open region of lobe@ A  the P-V curve to estimate the connectivity of the tree. Using
and (b) B, as defined by Eq6). a simple thresholding model, we first obtain the fractign

Pressure, P (cm H30)
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Parent branch

4]

i+1,2j i+1,2+1

Left daughter Right daughter

FIG. 6. Convention for labeling branches of the tree according
to Eq. (10).

(d)

—_
)
~—

b1,1 $2,2 = $1,1
of air sacs open at any pressiPeand subsequently an ex- ,E ; 5 ;
pression of theP-V curve in terms of the tree structure. 4 4l . A
R [ ---:---'— ' —
o -fz !
A. Binary tree model ) G o & !
o .
To study the inflation through the asymmetric lung, we P a2 PLa PLi Pos
P P P

construct an incomplete binary trége defined as a set of
branchegairways. Each branch ir7is labeled by a pair of FIG. 8. The process of airway opening in a tré®—(e) show
indices (,j), where the index is the generation number of the states of the tree with increasify Branches are labeled as
the branch and the indejxis used to distinguish between shown in Fig. 7. Open branches are shown as outlines, newly
branches of the same generation<(0<2'). The root of the  opened branches are shown in gray, and closed branches are shown
tree is labeled (0,0). in black. The active surface is shown as a dashed line. Inflation
A branch either bifurcates into two daughters or subtend$egins atP=0 with all branches other than the root clogegland
an air sac. The daughters (j’) of a bifurcating branchi(j)  proceeds by airway openings, either individugly or in an ava-

are given by lanche(c), asP is increased(d), (e) show the pressure differences
AP and stateg of three segments (1,1), (2,2), and (3,5), respec-
(i+1,2)) left daughter tively, belonging to the pat®; 5, shown in Fig. 7. Different behav-
(i',j")= (10)  ior is observed for branches on the active surface and those embed-

(i+1,2j+1) rightdaughter, ded in an avalanche.

as shown in Fig. 6. Branches which subtend an air sac are the E&ch branch is either open or closed. The stafeen or
terminal branches or “leaves” of the airway trébranches ~closed of a branch {,) is described by a Boolean variable
with underlined labels in Fig.)7 The set of all leaves dfis ~ &i,j Such that
defined asC, where£LC 7.

We define a pathP; ; for a branch {,j) as the set of & = o
branches connecting,() to the root of the tre¢double line Tl if(iLj) is open.
in Fig. 7). We note that according to the definition in Eq.

(10), the parent of i,j) is given by (—1[j/2]), where[X] Every branch,j) is assigne_d a threshold presspre . The
represents integer part af Thus, threshold pressure determines the transition of the branch

from a closed to an open state.

0 if(i,j) is closed

P i={(i—Kk,[j/2]): Vk=0...i}. 1. Airway opening
At the beginning of inflation, the lung is completely de-
Root gassed and we assume that all airways except the root are

closed. Thus§y =1, and¢; ;=0 otherwise. The pressure in

all closed branches of the tree is 0. The external predBure
at the root of the tree is increased from 0 by infinitesimal
amounts until all branches in the tree are open. After each
increase inP, the system is allowed to reach equilibrium,
until all open branches connected to the root are at pressure
P.

All closed branches whose parent is also closed do not see
any pressure differenc&P across their length. However, a
closed branchi(j) whose parent is open experiences a pres-

FIG. 7. An example of an asymmetric trdeconsisting of all ~ Sure difference\P; ;. These branches form an interface be-
labeled branches. Circles represent the air sacs connected by théeen the open and closed regions of the I(ategshed line in
terminal branchegshown with underlined labeldelonging toc.  Fig. 8) called an active surfacgtl]. Since the equilibrium
The double line £=) shows the pattP; 5 connecting the terminal pressure in the open branchesHsand that inside closed
branch (3,5) to the root. branches is 0AP; j=P. However, transients during airway
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Front positive where

spike

[ —_—
) ]APz‘,j /R 1 for x=0,
? <+— ()= 0 for x<0
A v/ Rz Negg;;ﬁg '

ARN——"r, Ss=—7>" is the unit-step function.

= §+ 3. Opening pressures

(a) AP;; <pi; (b) AP, ; = pj;

Every open branchi(j) other than the root undergoes a
FIG. 9. Pressure along the axis of a liquid bridge in bran¢}) ( t.ransmon from be!ng closed to being open at a pressure de-

when AP, ; is just abovep, ;, the liquid bridge breaks, a pair of fined as the opening pressugg; of the branch,

sound waveg“crackles”) are generated, and the pressure front

propagates downstream. & i=0(P—¢y)). (12

openings could causaP;;>P for some branches on the Using this definition and Eq(11), we can write @(P
active surface. —$1;)=0(P—p; ;) O(P—¢;_1(2), Which has a solution
Figure 9 illustrates the opening of an airwayj{ under
an applied pressure differenceP; ;. For AP; ;<p;;, the
liquid bridge in the airway has a finite thickness and the
surface tensiory of the liquid is able to sustain the pressure _ S _
difference[Fig. A@)]. When the pressure differenceP;; ~ Thus the opening pressugg ; of a branch (}) is the maxi-
across the branch exceeds its threshold pregsyresurface  mum of its threshold pressugg ; and the opening pressure
tension can no longer sustain the liquid bridge. At this point0f its parente; _ ;2 .
the airway opens and the energy stored in the liquid bridge is If the threshold pressung, ; of a branch {,j) is less than
released in the form of a pair of sound wavese traveling the opening pressure of its paredt_, ), the opening
upstream and the other downstrgacalled cracklegFig. — pressureg; ;= ¢; 1 iz and thus the branchi,j) and its
9(b)]. Immediately following opening, the air pressure onparent open simultaneously as part of an avalanche. For ex-
two sides of the former liquid bridge is significantly different ample, the branch (2,2) opens simultaneously with its parent
and the two regions are separated by a sharp pressure frofif.,1) in Figs. &) and 8e). For a branchi(j) on the active
The pressure front diffusively propagates deeper into théurface, the threshold pressug; is greater than the open-
tree until the two daughters of the brandhj} are exposed ing pressure of its parew; _ [, Since this is precisely the
to the external pressuie (Fig. 9). If the threshold pressures condition that stops an avalanche and produces the active
of the daughters are lower th& the daughters open simul- surface. Thus according to E¢L3), the opening pressure
taneously with the parent. The process of opening is conting; j=p; ;, which is greater than the opening pressure of its
ued until all closed branches connected to the root of the treparent, ¢; _4jj;;;. For example, the branch (3,5) does not
have threshold pressures greater tiRarand a new active open simultaneously with its parent (2,2) but at a higher
surface is formed. The simultaneous opening of a subtreepening pressurgrig. 8(f)].
following a small increase i® is called an avalanche8].

dij=max(p;;,bi-1m)- (13

4, Transients

2. Threshold pressures The threshold pressurgs; are assigned priori and rep-

The threshold pressure of an airway strongly depends ofesent the quasistatic opening pressures of the airways. How-
local variables such as the rigidity of the airway walls, theever, during fast dynamic openings within an avalanche, the
amount of fluid present, and its surface tensi@4,35. actual threshold pressures and the pressure difference across
Since these quantities vary from airway to airway, the threshthe segment could be different from their static counterparts.
old pressures can be effectively considered to be independetit particular, crackles which accompany airway openings
random variables distributed according to generationcause an instantaneous increasé . We therefore replace
dependent distribution functions(p). Although we allow the step function®(P—p;;) by a more general function
pi to be generation-dependent, we assume that branches ofj(P)=F(P,p; j,¢i_1j2). Which is also a step function
any given generation are statistically identical and hencavhose argument depends on the opening pressure of the par-
their threshold pressures are drawn from the same distribient (i—1[j/2]) in addition to the pressure and the thresh-

tion. old pressurep; ;. Thus we rewrite Eq(11) as
A branch (,j) is open if and only if it has an open parent
and the pressure differenceP; ;=P across it exceeds its &i=Fii(P)& 1. (14)

threshold pressurp; ;. Thus

The exact form of~; ;(P) depends on the model of airway
Ei=O0P—pij) &1y (1))  opening considered.
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B. Analytical solution Since the distribution functiong only depend on the gen-
Equation (14) recursively expresses the state of airway®ation number, the averaged quan(i¢y;) depends only on

(i,j) in terms of the state of its parent. By iterating Et), 1€ external pressurP and the generation number We
we write the nonrecursive form as defineI’;(P)=(¢; ;), which is the opening probability of a
branch (,j) at pressuréd®, so Eq.(18) can be rewritten as

&i=Fiy Ficuprmr - Fooboo™ I1 Fri(P), (15 1
k)&, (fa=— 2 Ti(P).
Nt (et
since&y =1 as the root is always open. Thus a branigl)(
is open if and only if all branches along the pg; con-  Collecting all terminal branches of the same generatione

necting it to the root of the tree are open. can rewrite the above sum as

1. Airway tree partitioning
(fa)=2 TH(MTy(P), (19

We can now calculate the fraction of open air sacs at a
given pressure. Since each terminal airway subtends one air
sac, the total number of air sacs in the lung is equaito wherelIl(n) is the distribution of generation numbemsof
the number of terminal airways. An air sac is open if thethe terminal branches, i.e., the fraction of terminal branches

terminal airway connected to it is open, and the fraction ofwith generation numben.

open air sac$, is given by Equation(19) conveniently separates the effects of mor-
phological features of the tree structure in a lung, given by

1 the distribution of terminal depthd (n), from the dynamic

fa=r- E Gijs (16) component described by the opening probabllit¢P). This

Nt (i.heL
allows us to calculatdI(n) from models of tree structure

where the sunE¢; ; gives the number of open leaves of the andI',(P) from models of different dynamical processes in
tree. To compare our results with experimental data, it ig8 much simpler geometry. .
necessary to average over all configurations of threshold We note that for a symmetric tree, all terminal branches at

pressuresp; ;. Using Eq.(16), the averaged quantityf ) the same generatioN and thus the generation distribution
can be written as 15 of the terminal branches for a symmetric tree is given by

1 I[Ig(n)=6,n-
<fa>:n_f Dpp(p){ 2 §i,j}, 17 = Snw

T (er Using Eq.(19), the fraction of open air sad$5) for a sym-
where metric tree can be calculated as

= = f3)=Tn(P). 20

J Dp p(p)EJ dpoo Po(Poo - j dpijpi(pij)--- (=P 20
o o Thus Eq.(19) allows us to use the results obtained for sym-
represents an integration over all possible values of th@etric trees and translate them to asymmetric trees with dif-
threshold pressures of every branch in the tree. We note thigrentIi(n).
since the distributiong;(p; ;) are normalized, each of the

bare integrals [dp;; pi(pi;)=1 and their product 3. The PV curve

/Dpp(p)=1. Thus the expression in Ed1l7) is self- We can now write a comprehensive expression for the
normalized. Reversing the order of the commutative operavolumeV of the lung as a function of pressulfe Using the
tions of integration and summation, we get expressions of Eq$5) and(8) and replacing , by (f,), we
et
(o= 3 [ Doewrt = 3 (4 g
¥ nrafe ) TPPP G~ nrfyec i) V(P)=Ve(P) (fa),
(18)

which can by expanded using the result of Etp) as
Thus, Eq.(18) partitions the averaged fraction of open air
sacs in the tree into a normalized sum of probabilities of the
existence of open paths from the terminal branches to the V(P):VE(P); I(n) I'y(P). (21)
root of the tree.

Although the expression in E¢21) was obtained for a
binary tree, it is equally applicable to trees of different, even

The state variablg; ; is a product of terms that are func- heterogeneous, branching. Thus in Sec. IV we calculate
tions of the threshold pressures of all branches along the paih,(P) for various models on linear chains nfgenerations
P;j and the external pressuRs as expressed by E@L5). and apply those results to the asymmetric airway tree.

2. Opening probabilities
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IV. MODELS OF AIRWAY OPENING uniform. The § function reflects the fact that thg {1)th
branch opens at the same pressure agtthene. However, if
¢' is greater tharp, the (j +1)th branch will open indepen-
dently andG will contain a term® (¢’ — ¢), © being the
unit step function, reflecting the ordering of the opening
pressures. The functioB is thus given by

We consider a linear chain & closed branches labeled
j=1,... N. The internal pressure in the pipe is 0 while an
external pressuré, is applied at one end €0). The quan-
tity of interest in this case iEy(P), which is defined as the
probability of fluid flow in a pipe withN closures at pressure

P. For end-to-end fluid flow, we need all theclosures to be GA(@'|p)=S(dp'— P)+O(P' — ). (25)
open at the given pressuRe At pressureéP=0, all closures
are closed and hence the probability of fldy(0)=0. Using Egs.(23) and (25) and by repeated application of

We define a probability density functiap;(¢) such that  Eq. (22), we find
() d¢ is the probability for closur¢ to have an opening

pressure betwees and ¢+dep. A function Gj(¢’|¢) can zpf(¢)=j¢j’l. (26)
then be defined as a conditional probability that the branch . . _
(J + 1) has an Opening pressure betweﬁnand ¢’ +d¢’, Thus using Eq(24), we are able to derive the opening prOb-

given that thejth closure opens between pressutesand ~ ability as

+dd¢. This allows us to write
ras TR(P)=P. (27)

1
(//j+1(¢,):f doGi(d'|d) (). (22 This is identical to the expression in E@l) that can be
0 derived using other methodg6—24.

We note that there is a one-to-one correspondence between

the conditional probabilitie&(¢’|$) and the opening func- B. Model B: Permanent effect of pressure wave
tions F; ;(P). Defining either of these two functions com-  |n this case we slightly alter the algorithm for the change
pletely defines the dynamics of the system. of state of a closure. In addition to opening only when the

To calculatey;, we need an initial state, which can be pressure across the closure exceeds its threshold pressure, we
calculated by defining a hypothetical closurejat0 and  take into account the added effect of a pressure wave. When
assuming that this closure is permanently open, thabis, closurej opens, a pressure wave is set up in the fluid which

=0. Thus, facilitates the opening of closurg € 1). We take this into
account by changing the opening pressure of the closure (
Po(P)=3(h). 23 +1)as
The opening probabilityl"y(P), can thus be written as bjr1—adjiq, (28)
_ where,a (<1) is a constant. In this model, the reduction of
Tn(P) fo e ¥n(h). (24) the threshold pressure is permanent, i.e., once a parent opens

the threshold pressure of the child, it is maintained at the

In the following subsections, we define three specificreduced level for the duration of the experiment. Thus for all
models of airway openings, construct their respective condipractical purposes, the threshold pressures of all generations
tional probabilities G(¢'|#), and calculate the opening greater than 1 are distributed uniformly between 0 and
probability "y (P). The first, model, describes the simplest while that of the first generation is distributed between 0 and
process of avalanching. ModeB and C add the effect of 1 (as it cannot be opened in the wake of the pressure wave
transients, especially crackles, to the opening process biyom the parent
modifying the threshold pressures of the segments perma- We can then modify Eq.(25 to write the function
nently or temporarily. Pressures are normalized such that th&®( 4’| ¢) for model B as
maximum threshold pressuR, in the tree is 1. In all three
models we assume that the threshold pressure distribution , ¢ , 1 ,
p(p) is uniform between 0 and 1. These models then allow Go(¢'| )= 7 2(a=d)d(¢' = d)+ —0(a=¢’)

us to fit the experimentd®-V curve using Eq(21).
O(¢' =) +0(dp—a)d(d'—¢). (29

The first term again represents the avalanche part of the
This is the simplest model of airway opening. To con-closure opening, but in this case the renormalization of the
structG(¢'| ¢), we look at the processes by which a branchopening ) increases the probability factor byal/A step
opens. If the opening pressuge of the (j+1)th branch is  function is also included, which distinguishes the behavior of
less than that of th¢th branch,¢, the branch [+ 1) will the closures for pressures less tharfrom the automatic
open simultaneously with the branghas a part of an ava- opening at pressures greater thanThe second term repre-
lanche. We could thus writ& for this part asp5(¢' — @), sents the independent opening of a closure and the probabil-
where the factokp is numerically the probability thag’ is ity is again rescaled by a factordl/ The two step functions
less thang, since the distribution of threshold pressures isin this term not only reinforce the distinction in the first part,

A. Model A: Simple avalanching
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but also restrict the possible values®f to less tharw. The 6
final term is included to take into account the automatic
opening of the closures at pressures greater than

Using the result of Eq(29) in Eq. (22) and the initial
condition from Eq.(23), we can derive

¢

a

1
’:'E Model A
I

(a) Model B i

Distribution, 1(¢)

j—1
wf‘w):j() O(a—¢)+0(d—a). (30

0.0 05 «a 1.0 1.5

Again the fluid flow probability can be derived using Eq. Opening Pressure, ¢
(24) as

1.0

N—-1
Fﬁ(P)=P(g) O(a—P)+PO(P-a). (31
05T

r(P)

C. Model C: Transient effect of pressure wave Model C

The depression of the opening pressure due to the pres- )

sure wave in modeB [Eq. (28)] is a permanent phenom- 0.0 '
: ) 0.0 05 o 10 15

enon. This means that once the threshold is lowered by the Pressure, P
pressure wave, it does not regain its original value. Thus all
thresholds after the first one are distributed between Oaand  FIG. 10. (a) The distributiony(¢) of opening pressure$ and
and not between 0 and 1. However, apart from this renor¢b) the opening probability’(P) of an airway as obtained from the
malization, there is very little that is different between mod-three models of airway openingA( B, andC) for a chain of six
els A and B. We shall now try to explore a more intricate branches and witlxk=0.75 for modelsB and C.
model in which the reduction of opening pressure is only a
temporary phenomenon and the threshold regains its original

value after a short time, unless the closure is opened in- (1 ek
stantly. We shall deal only with instantaneous reduction of Ai(a):kﬂl ;Jr ek
the threshold, which facilitates the avalanchelike opening of
the closure but has no effect on the independent change of o
state. Bj(a)=Aj_1(a) .—) (34
The conditional probabilityG¢(¢'|¢) for this model is ]
given by for j=1, andAg(a)=By(a)=1.
b b Upon integrating Eq(33) with respect tog, we get
GC(¢’|¢)=;®(a—¢)5(¢’—¢)+(a—¢)®(¢’—— pN
TN(P)=Ay_ (a)(—)@(a—P)+FC>(P)®(P—a),
+0(h—a)3(d' — ). (32 RN " 5
As mentioned earlier, the process of avalanching in this h
model is identical to mode and thus the first term @€ is ~ W1€'®
identical to that in Eq(29). However, the second term, de- N-1 g (a)
scribing independent opening, is markedly different in this IS (P)=By(a)+ k_(pk+1_ak+1)_ (36)
N =0 k+1

case. Not only is there no rescaling of the opening pressures
in this event, there is also the absence of the restricting step The opening probabilityl’y and the distributiony of
function ong’. Thus¢’ can now take values greater than opening pressureg for the three models are compared in
and give rise to delayed large avalanches. The final term iEig. 10. The distributiony for modelC [Fig. 10@)] is visu-
again identical to that in Eq29). This is because at pres- ally similar to the distributions obtained from experimental
sures greater tham all closures are opened in large ava- data(Fig. 5. We note thal"y is identical to the open fraction

lanches. in a symmetric tre¢Eq. (20)]. Thus for the same maximum
Equation(32) can now be used to solve for the probability threshold pressure and number of generations, m@&lafsd
density function,z,bjc(qS), which is given by C recruit more air sacs than the simple avalanching médel
. [Fig. 1ab)].
Ui () =Ai(a) ) O (a— ) We can construct more sophisticated models of airway

opening by extending these basic models. The pressure wave
could have a partly instantaneous and partly permanent effect
on ¢ by combining model8 andC. The parametes could

be distributed instead of being a fixed number. The threshold
where pressure distributions could be made nonuniform as well as

-1

+ 1+k21 Bk(a)(ﬁk}((ﬁ—a), (33
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generation-dependent. In each case, the technique described 1.0F
in this section could be used to obtain an analytical solution < osl (=)
for (¢) andT'y(P). These results can then be combined o ol Lobed
with a distribution of generation numbers of terminal 2 06}
branchedI(n) and the elastidP-V curve Vg(P) to obtain E
the final pressure-volume relationship of the lung. > 04
5 02f J Model A ----
V. FITTING EXPERIMENTAL DATA > 00 _ " Model C ——
We fit the f ,(P) curves obtained from experimental data 0 10 20 30
(Fig. 4) with polynomial functionsS ,a,(P/Py)" up to the Pressure, P (cm H20)
inflection pointP, in the curves. The maximum threshold 015

Distribution, II(n)

pressureP, is given by the pressure above which all
branches are open and thiis=1. The inflection points in (b)
the curves are determined by numerically differentiating the 010 - Lobe A L i
curves forf, and finding the first maxima. For moda| we 0 [Horstield —
determineP by fitting the curve up td® and extrapolating
it to f,=1. For modelC, P, represents the point of cross- 0.05 | ]
over from avalanchelike behavior to pressure-wave mediated
behavior and thus the parameter P /P, J_l_L

We use polynomials of order 48, since this is the known 0.000 10 2'0 3'0 20
maximum depth in a dog lunfB2]. The large number of
coefficients makes simple regression unstable, and we use an Generation number, n
additive diagonal term'in the coeff'icient' matrix tp regularize FIG. 11. (a) The volume fractiorf, of the open air sacs obtained
the results. The_ raw fit thus o_btalned is then fine-tuned bXlsing modelsA and C obtained by fitting the experimental data for
randomly updating each coefficient by a small amount angope A and(b) the distributionI(n) of the generation numbersof
recalculating the fitting errors simultaneously in the normalie terminal branches obtained from the fit, compared to the distri-
and logarithmic scales, to ensure the accuracy of the coeffisytion for the Horsfield model of the dog lung.
cients for smalin.

For modelA, f, is given by using Eqs(19) and(27) as

] and a broad distribution for ¥5n<<40 (shown as filled rect-
P angles. The second part of the distribution has two main
Ay _ _
<fv>_§ H(n)( Po) (37) peaks in the region 22n<30.
We compardI(n) to a known model for the airway tree
and the coefficients of the fitted polynomial=1II(n), the structure, the Horsfield modgB2], which is an asymmetric
distribution of terminal generations. For modglthe expres-  self-similar description of averaged experimental data ob-

sion for f, for pressures less thanis given by tained by physical measurements on a polymer cast of the
airway tree. The Horsfield distribution corresponds in shape

II(n)[ P\" and position with thdI(n) obtained by fitting theP-V data.
<f§)= ; 1 P—) (389)  We are able to recover the two main peaks at approximately

their correct positions. The smailpart of the distribution
(n<5) that we obtain from our data does not correspond to
tthe branching structure of the tree since the dog lung is not
known to have terminals with deptims<13.
N We attribute the existence of the smalpart of IT(n) to
C\_ An(@) (E) the airway wall elasticity and the volume of air contained in
(fH)=2 M(n) (39 . . | !
n n \Pg the airways before any air sacs opéppendix A). The first
few branches of the airway tree are held open by cartilagi-
for pressures up ta. Thus, the distribution of generation nous rings, and the expansion of these branches aPlalso
numbers of the terminal segments can be estimated byontributes to the smaifi-part of II(n). We ignore this re-
II(n)=na,/A,(a). gion when focusing on the branching structure and normalize
For modelsB and C, we fit the regionP>«a using the the Horsfield model to only the area under the second part of
expressions fol",(P) in this region as given by Eq$31)  the distribution. The Horsfield model is an idealized descrip-
and(35) and the samél(n) as obtained by fitting the region tion of the dog lung and does not account for the differences
P<a. The fitted curves fof , using modelA andC for lobe  between individual dogs. In contrast, with our approach we
A are displayed in Fig. 4&). The distributionlI(n) obtained can also identify the variation in structure among specific
using modelC is shown in Fig. 11b). samples.
The distributionII(n) in Fig. 11(b) has two distinct re- Finally, using Eq.(5), we combine the effect of elasticity
gions, a narrow peak fon<<5 (shown as open rectangjes to obtain the fullP-V curves of our models using the expres-

and the distribution can be calculated from the polynomial fi
asIl(n)=a,a"" 1. Similarly, for modelC, thef, is given by

031912-9
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We show that while calculating the pressure-volume curve or
Jle— Model C| analogous average descriptions of fluid transport, the com-
plex branching structure can be partitioned into a linear su-
perposition of one-dimensional chains. Using this result we
constructed a comprehensive model of the iy curve

1 based on the topology of the lung airway tree, the elasticity
\<Data of the lung tissue, and the mechanisms of airway openings.
20

03} (a)
Lobe A

027t

01r

Distribution, ()

. We have shown that transient pressure waves during the pro-
0 10 30 cess of airway openings significantly affect the shape of the
Opening Pressure, ¢ (cm H20) P-V curve. Although the fullP-V curve is a result of the
combination of influences, we have been able to separate the
300 [ 4,y T effect of each of these factors using a single measurement.
Lobe A The resulting method also provides an estimate of the distri-
bution of the generation number of the terminal branches in
the airway tree, or the depth of the air sacs in the lung. Since
the estimated distributions compare favorably to available
g Data © | morphological data, our approach should be useful in clinical
§ Model A ---- situations as well as in developmental studies. In general, our
ooosoepoed Model C— | results, particularly those involving tree partitioning and the
0 10 20 30 general solution of the opening process, are equally appli-
Pressure, P (cm H,0) cable to other physical systems involving transport in asym-
metrically branched structures.

0.0

200

100

Volume, V' (ml)

FIG. 12. (a) The distributiony(¢) of opening pressures using
modelC compared to the experimental data from Igband(b) the
full P-V curve reconstructed using E@) and modelC, compared ACKNOWLEDGMENTS

to the experimentally obtained data. This study was supported by NSBBES-0114538 and
Hungarian Scientific Research Fund Grant No. OTKA
sion for Vg(P) from Eq. (4) along with the parameters ob- T-30670. H.E.S. was supported in part by the NIH Center for
tained from the fits shown in Fig. 3. Figure (B2 compares Research ResourcéB41RR1362p
the distribution of opening pressures using madelith that
gS:S:ansegreusclgr%ptgfede?(nplizglzgal data. The resultiny APPENDIX A: VOLUME OF AIRWAYS
The P-V curve of modelC has a small deviation from the ~ We can calculate the contribution of airways to the total
experimental curve near the maximum threshold pressurgolume of the lung using Eq19). Assuming each airway is
[Fig. 12b)] due, we believe, to an underestimation of thea cylinder whose radius; and length¢; are exponential
maximum threshold pressure, i.e., the pressure at which aflinctions of generation numbef1],
airways are opened. Our assumption that the maximum
threshold pressure of the branches corresponds to the pres-
sure at the point of inflection is only true when the distribu-
tion of threshold pressures is uniform and generation-
independent. However, if the threshold pressures are 0=ie (A1b)
generation-dependent, our method underestimates the maxi- =7t
mum threshold pressuil27,48. To estimate the effect of
generation dependence, we simulated inflation of randomlyhe volume of an airwayi(j) can be written as
branched trees using a simple generation-dependent thresh-
old pressure distribution with overlapping domains. We
found that the inflection point shifts to a pressure smaller
than the maximum threshold pressure, independent of the
The high préssure in (i region wold allow a more sgnif /eTe# =A% andug is the volume of the root branch. For
cant cgntr?bution from the op?ening of the deeper air $E«:g a symmetric tree, there gfé Branches at theth generation
(21)], which we are unable to probe accurately. However inand _the opening pro_bgb|l|ty c.)f each_ O.f themIi;( P). As- .
' ' ' " 'suming that the elasticity of airways is identical to that of air

real lungs, these air sace¥30) are few in numbe[Fig. . .
11(b)] and do not contribute significantly to the shape of the;ctlcesﬁ Lhye averaged total volurig of open airways is thus

P-V curve.

ri=pro, (Ala)

Ui=7Tri2€i=Kiv0, (A2)

VI. CONCLUSION
. . Vi Ve(P) 2 2" (P VE(P)g, (26)"To(P).
In conclusion, we have derived a general theory for qua- n n

sistatic fluid flow through collapsible bifurcating structures. (A3)
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If 2 y<1, most of the contributing volume ¥, comes from

the smalln region where the branching is symmetric. The
maximum airway volume&/y, ., can be approximated as that

V), for an infinite tree with all branches open. Thus,

Uo

Vb ma* 1o Vo. (A4)

Thus the relative volume of the airways is given by

PHYSICAL REVIEW &7, 031912 (2003

\ 7 Ve(P)
=(1-2x) v

; (2k)"TH(P).  (A5)

Vb,max

We note that if the volume of air sadg, is allowed to
contribute to the total volume of the lung P), the terms in
the expansion with respect I, decay exponentially and are
only significant for small values af, as can seen from the
open boxes in Fig. 1b).
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