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Fluid transport in branched structures with temporary closures:
A model for quasistatic lung inflation

Arnab Majumdar,1,2 Adriano M. Alencar,1,2 Sergey V. Buldyrev,1 Zoltán Hantos,3 H. Eugene Stanley,1 and Béla Suki2
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We analyze the problem of fluid transport through a model system relevant to the inflation of a mammalian
lung, an asymmetric bifurcating structure containing random blockages that can be removed by the pressure of
the fluid itself. We obtain a comprehensive description of the fluid flow in terms of the topology of the structure
and the mechanisms which open the blockages. We show that when calculating averaged flow properties of the
fluid, the tree structure can be partitioned into a linear superposition of one-dimensional chains. In particular,
we relate the pressure-volumeP-V relationship of the fluid to the distributionP(n) of the generation number
n of the tree’s terminal branches, a structural property. We invert this relation to obtain a statistical description
of the underlying branching structure of the lung, by analyzing experimental pressure-volume data from dog
lungs. TheP(n) extracted from the experimentalP-V data agrees well with available data on lung branching
structure. Our general results are applicable to any physical system involving transport in bifurcating structures
with removable closures.
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I. INTRODUCTION

The complex structure of biological systems@1–6# and
transport processes that occur in them@7–13# are topics of
much current interest, attracting researchers from engin
ing @14–16#, physics@17–20#, and physiology@21–23#. In
this paper, we address the problem of forcing fluid throu
an asymmetrically branched structure with random closu
that can be removed by the pressure of the fluid. Such p
lems are often encountered during fluid flow in organ s
tems where the pathways can be blocked, e.g., circulatio
blood @21# and flow of air in the lung@24,25#. Unrestricted
flow in these pathways is essential for proper physiolog
function, and blockages lead to potentially lethal situatio
In spite of its critical application, the problem of fluid flow
through collapsible bifurcating structures has only been m
ginally studied@26–29#. Recently, we introduced a simpl
tree model to characterize the asymmetry of the lung airw
tree using pressure-volume curves during inflation@30#. Here
we propose a general method to obtain analytical results
tree structures and apply it to the process of lung inflatio

The primary function of the respiratory systems is to d
liver air to the air sacs, called alveoli, for gas exchan
Morphological data show that the mammalian lung cons
of airways arranged hierarchically in an asymmetric bin
tree, the airway tree, with air sacs connected to the termi
@31,32#. Many peripheral airways of a diseased lung collap
during expiration as the internal air pressure and the ten
of the elastic walls are insufficient to counter the surfa
tension of the liquid lining@33–35#. The liquid forms a
bridge or closure~Fig. 1! which completely blocks the flow
of air, excluding a large number of alveoli from gas e
change@25#. During inspiration, the difference between th
atmospheric pressure and the pressure surrounding the
1063-651X/2002/67~3!/031912~12!/$20.00 67 0319
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the transpulmonary pressureP is slowly increased. As a re
sult, a pressure difference builds across the closures w
are exposed to the atmospheric pressure through the ro
the tree. Each closure reopens when the pressure differ
across it reaches its critical opening threshold@36,37#. Since
the airways are arranged in a tree structure, opening
branch is not possible until all branches connecting it to
root of the tree are open. If the threshold pressure of a dau
ter branch is smaller than that of its parent, the daugh
opens simultaneously with the parent. This mechanism a
applies to subsequent generations, leading to avalanche
airway openings@38#.

The process of airway opening via avalanches has b
studied for symmetric binary tree models. The volume
inhaled airV during inspiration, for a fully collapsed lung
was found to follow a simple power law inP,

V~P!}PN, ~1!

whereN is the generation number of the terminal branch
@26–28#. Such pressure-volume (P-V) relations are used to
measure lung function in clinical environments. Howev
the real lung is asymmetric, with many branches missi
which significantly distorts theP-V curve from the ideal
power-law behavior@30–32#. It is thus important to deter-
mine how the properties of the system depend on the as

FIG. 1. Section of an airway showing~a! the film of liquid when
the airway is open, and~b! the liquid bridge blocking the flow of air
when the airway is closed.
©2002 The American Physical Society12-1
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metry of its underlying tree structure. Avalanches are furt
complicated since the opening of an airway is accompan
by an audible pressure wave called crackle@39–41#, which
in turn can assist the opening of airways downstream. Mo
over, the air sacs are elastic and the effect of their elasti
on the P-V curve becomes significant near the end of
inspiratory cycle, when the majority of air sacs have be
opened@27#. Although asymmetry, crackles, and elastic
are important contributors to the shape of theP-V curve,
their effects are isolated to different regions and thus i
possible to extract information about them by analyzing
sameP-V curve.

We obtain experimentalP-V curves of isolated dog lung
lobes~Sec. II! and develop a model of the lung during av
lanchelike airway openings~Sec. III A!. We show that when
calculating theP-V relationship, it is possible to partition th
complex bifurcating structure into a set of paths connect
the root of the structure to the air sacs~Sec. III B!. Conse-
quently,

V~P!5VE~P!(
n

P~n!Gn~P!, ~2!

whereVE(P) is the elasticP-V relationship of the lung~Sec.
II !, P(n) is the distribution of terminals with generatio
numbern, andGn(P) is the opening probability of an airwa
of generationn under the influence of avalanches and cra
les ~Sec. IV!.

Using the analytic results of our models, we are able to
the experimentalP-V data~Sec. V! and obtain the distribu-
tion P(n), which is a key morphologic property of the ai
way tree. Since experiments measuringP-V curves of an
inflating lung are noninvasive, this method provides a way
study ‘‘microscopic’’ branching structures from ‘‘macro
scopic’’ P-V data without the use of invasive techniqu
@30#. We compared these results with known morphologi
data on the lung structure. The agreement of our model w
experimental data provides a better understanding of both
general problem of fluid flow through blocked pathways a
the particular manifestation of this system in the case of
lung.

II. EXPERIMENTAL DATA

We determine experimentally theP-V curves of two iso-
lated dog lung lobes, labeledA andB. A cannula is inserted
into the main bronchus and the lobe is degassed in a vac
chamber as described by Smith and Stamenovic´ @42#, col-
lapsing almost all the airways. The degassed lobes are pl
in an airtight chamber with the cannula attached to a m
tube that is led through the lid of the chamber, as shown
Fig. 2. We inflate the lobes from the collapsed state to to
lobe capacity by steadily decreasing the chamber pressurPc
using a suction pump. We measure the transpulmonary p
sure

P[Pa2Pc
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by recording the chamber pressurePc with respect to atmo-
spheric pressurePa using a Valydine MP-45 transducer~50
cm H2O). The airflowQ is measured at the main bronchu
using a screen pneumotachometer~resistance 5 cm H2O/l/s)
attached to another Validyne MP-45 transducer~2 cm H2O).
Pressure and airflow are both sampled at a rate of 80 Hz.
pressureP is increased to 30 cm H2O in 120 s. At this infla-
tion rate, the time to regain equilibrium after an airway ope
is negligible compared to the total inflation time. The volum
V of inhaled air is calculated by integratingQ with respect to
time,

V~ t !5E
0

t

Q~ t8!dt8. ~3!

The measuredP-V curves are shown in Fig. 3. Althoug
the two lobes have slightly differentV at maximumP, both
curves show certain common features:

Region A(P,10 cm H2O): As P increases,V increases
only slightly. At these pressures almost all air sacs are c
lapsed and the slight increase inV is due to the opening of a
small number of airways and their subsequent elastic exp
sion.

Region B(10 cm H2O,P,20 cm H2O): Over this range
of P, V increases dramatically from near 0 to near saturati
In this region, air sacs are recruited in avalanches giving
to the steep increase inV.

Region C(P.20 cm H2O): In this region, almost all air
sacs are open andV increases as a result of the elastic e
pansion of the opened air sacs. We fit this region usin
single exponential model for theP-V relation for the elastic
expansion of the air sacs@43–45#, whereVE(P), the elastic
volume of the lung, is given by

VE~P!5V0~12ae2bP!, ~4!

where the parametersV0 , a, andb were determined by fit-
ting experimental data forP.20 cm H2O and are consisten
with those previously obtained@46#.

FIG. 2. Schematic diagram of the experimental setup. The l
is placed in a sealed chamber~pressurePc) with the main bronchus
open to the atmospheric pressurePa . The air pressure in the cham
ber is slowly decreased using a vacuum pump which creates a
sure differenceP5Pa2Pc .
2-2
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When all airways and air sacs in the lung are openV
increases only due to elastic expansion and Eq.~4! describes
the P-V curve. If only a fractionf v of the total volume is
open, theP-V curve can be written as

V~P!5 f v~P!VE~P!. ~5!

Thus, the volume fractionf v of the open region of the lung
can be calculated as

f v~P!5
V~P!

VE~P!
, ~6!

and is shown in Figs. 4~a! and 4~b! for the lobesA andB.
The total volumeV is the sum of the volume contained

the open air sacs,Va , and the volume contained in th
opened airways~branches!, Vb ,

V5Vb1Va . ~7!

In regionA, Va'0 as nearly all air sacs are closed and
observed volumeV'Vb . In the fully open lung, regionC,
when all air sacs are open,Va is much greater thanVb . This

FIG. 3. Experimentally determinedP-V curves of two isolated
dog lung lobesA (d) and B (s), obtained during inflation from
collapsed state to total lobe capacity. The dashed lines s
asymptotic fits toVE(P) given by Eq.~4! with V05327.3 ml, a
50.907, b50.094/cmH2O for lobe A and V05377.1 ml, a
50.908,b50.075/cmH2O for lobe B.

FIG. 4. Volume fractionf v(P) of the open region of lobes~a! A
and ~b! B, as defined by Eq.~6!.
03191
e

approximation is also valid for most of regionB, once the
first few avalanches occur. We assume thatVb!Va and thus
V'Va over the entire range ofP; the approximation is more
accurate for higherP. If all air sacs are identical and eac
open air sac contributes an equal volume, the increase if v
is due to the increase in the fraction of open air sacsf a ,

f v' f a . ~8!

As P increases, more air sacs open and contribute toV.
The increase inf v is not continuous, but occurs in steps
different sizes, corresponding to avalanches which rec
varying numbers of contributing air sacs. The opening pr
suref of an air sac is defined as the pressure at which the
sac reopens. The distributionc(f) of opening pressuresf is
an important measure of lung condition, often used to de
mine the applied pressures during recruitment maneu
@47,48# and artificial ventilation@49,50#. When the pressure
is increased fromP by an amountdP, the increase in the
fraction of open air sacsd fa is the fraction of air sacs with
opening pressuresfP@P,P1dP). Thus the distribution
c(f) can be estimated as

c~f!5
d fa

dP U
P5f

'
d fv

dPU
P5f

, ~9!

using the approximation of Eq.~8!. The obtained distribu-
tions are shown in Figs. 5~a! and 5~b! for lobes A and B,
respectively. Similar distributions of opening pressures h
been obtained using computed tomography@51#.

III. LUNG INFLATION MODEL

We now develop a model of theP-V curve of an asym-
metrically branched tree during inflation. A tree is a min
mally connected graph with one and only one path betw
any two points@52,53#. The lack of redundant paths make
tree structures vulnerable to edge disruptions, since the
moval of any one edge affects a large number of paths,
nificantly affecting the connectivity of the structure. A
though this property is the primary cause of ma
obstructive lung diseases, we can exploit the strong signa
of a collapsed airway on macroscopic measurables suc
the P-V curve to estimate the connectivity of the tree. Usi
a simple thresholding model, we first obtain the fractionf a

w

FIG. 5. Distributionc(f) of opening pressuresf of the air sacs
in lobe ~a! A and ~b! B, obtained by differentiating Figs. 4~a! and
4~b! respectively, according to Eq.~9!.
2-3
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of air sacs open at any pressureP and subsequently an ex
pression of theP-V curve in terms of the tree structure.

A. Binary tree model

To study the inflation through the asymmetric lung, w
construct an incomplete binary treeT, defined as a set o
branches~airways!. Each branch inT is labeled by a pair of
indices (i , j ), where the indexi is the generation number o
the branch and the indexj is used to distinguish betwee
branches of the same generation (0< j ,2i). The root of the
tree is labeled (0,0).

A branch either bifurcates into two daughters or subte
an air sac. The daughters (i 8, j 8) of a bifurcating branch (i , j )
are given by

~ i 8, j 8![H ~ i 11,2j ! left daughter

~ i 11,2j 11! right daughter,
~10!

as shown in Fig. 6. Branches which subtend an air sac are
terminal branches or ‘‘leaves’’ of the airway tree~branches
with underlined labels in Fig. 7!. The set of all leaves ofT is
defined asL, whereL,T.

We define a pathPi , j for a branch (i , j ) as the set of
branches connecting (i , j ) to the root of the tree~double line
in Fig. 7!. We note that according to the definition in E
~10!, the parent of (i , j ) is given by (i 21,@ j /2#), where@x#
represents integer part ofx. Thus,

Pi , j[$~ i 2k,@ j /2k# !: ;k50 . . . i %.

FIG. 6. Convention for labeling branches of the tree accord
to Eq. ~10!.

FIG. 7. An example of an asymmetric treeT consisting of all
labeled branches. Circles represent the air sacs connected b
terminal branches~shown with underlined labels! belonging toL.
The double line (v) shows the pathP3,5 connecting the termina
branch (3,5) to the root.
03191
s

he Each branch is either open or closed. The state~open or
closed! of a branch (i , j ) is described by a Boolean variab
j i , j such that

j i , j[H 0 if ~ i , j ! is closed

1 if ~ i , j ! is open.

Every branch (i , j ) is assigned a threshold pressurepi , j . The
threshold pressure determines the transition of the bra
from a closed to an open state.

1. Airway opening

At the beginning of inflation, the lung is completely de
gassed and we assume that all airways except the roo
closed. Thus,j0,051, andj i , j50 otherwise. The pressure i
all closed branches of the tree is 0. The external pressuP
at the root of the tree is increased from 0 by infinitesim
amounts until all branches in the tree are open. After e
increase inP, the system is allowed to reach equilibrium
until all open branches connected to the root are at pres
P.

All closed branches whose parent is also closed do not
any pressure differenceDP across their length. However,
closed branch (i , j ) whose parent is open experiences a pr
sure differenceDPi , j . These branches form an interface b
tween the open and closed regions of the lung~dashed line in
Fig. 8! called an active surface@41#. Since the equilibrium
pressure in the open branches isP and that inside closed
branches is 0,DPi , j5P. However, transients during airwa

g

the

FIG. 8. The process of airway opening in a tree.~a!–~e! show
the states of the tree with increasingP. Branches are labeled a
shown in Fig. 7. Open branches are shown as outlines, ne
opened branches are shown in gray, and closed branches are s
in black. The active surface is shown as a dashed line. Infla
begins atP50 with all branches other than the root closed~a! and
proceeds by airway openings, either individually~b! or in an ava-
lanche~c!, asP is increased.~d!, ~e! show the pressure difference
DP and statesj of three segments (1,1), (2,2), and (3,5), resp
tively, belonging to the pathP3,5, shown in Fig. 7. Different behav-
ior is observed for branches on the active surface and those em
ded in an avalanche.
2-4
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openings could causeDPi , j.P for some branches on th
active surface.

Figure 9 illustrates the opening of an airway (i , j ) under
an applied pressure differenceDPi , j . For DPi , j,pi , j , the
liquid bridge in the airway has a finite thickness and t
surface tensiong of the liquid is able to sustain the pressu
difference @Fig. 9~a!#. When the pressure differenceDPi , j
across the branch exceeds its threshold pressurepi , j , surface
tension can no longer sustain the liquid bridge. At this po
the airway opens and the energy stored in the liquid bridg
released in the form of a pair of sound waves~one traveling
upstream and the other downstream! called crackles@Fig.
9~b!#. Immediately following opening, the air pressure
two sides of the former liquid bridge is significantly differe
and the two regions are separated by a sharp pressure

The pressure front diffusively propagates deeper into
tree until the two daughters of the branch (i , j ) are exposed
to the external pressureP ~Fig. 9!. If the threshold pressure
of the daughters are lower thanP, the daughters open simu
taneously with the parent. The process of opening is con
ued until all closed branches connected to the root of the
have threshold pressures greater thanP, and a new active
surface is formed. The simultaneous opening of a sub
following a small increase inP is called an avalanche@38#.

2. Threshold pressures

The threshold pressure of an airway strongly depends
local variables such as the rigidity of the airway walls, t
amount of fluid present, and its surface tension@34,35#.
Since these quantities vary from airway to airway, the thre
old pressures can be effectively considered to be indepen
random variables distributed according to generati
dependent distribution functionsr i(p). Although we allow
r i to be generation-dependent, we assume that branche
any given generation are statistically identical and he
their threshold pressures are drawn from the same distr
tion.

A branch (i , j ) is open if and only if it has an open pare
and the pressure differenceDPi , j5P across it exceeds it
threshold pressurepi , j . Thus

j i , j5Q~P2pi , j ! j i 21,[ j /2] , ~11!

FIG. 9. Pressure along the axis of a liquid bridge in branch (i , j )
when DPi , j is just abovepi , j , the liquid bridge breaks, a pair o
sound waves~‘‘crackles’’! are generated, and the pressure fro
propagates downstream.
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where

Q~x![H 1 for x>0,

0 for x,0,

is the unit-step function.

3. Opening pressures

Every open branch (i , j ) other than the root undergoes
transition from being closed to being open at a pressure
fined as the opening pressuref i , j of the branch,

j i , j[Q~P2f i , j !. ~12!

Using this definition and Eq.~11!, we can write Q(P
2f i , j )5Q(P2pi , j ) Q(P2f i 21,[ j /2]), which has a solution

f i , j5max~pi , j ,f i 21,[ j /2]!. ~13!

Thus the opening pressuref i , j of a branch (i , j ) is the maxi-
mum of its threshold pressurepi , j and the opening pressur
of its parentf i 21,[ j /2] .

If the threshold pressurepi , j of a branch (i , j ) is less than
the opening pressure of its parentf i 21,[ j /2] , the opening
pressuref i , j5f i 21,[ j /2] and thus the branch (i , j ) and its
parent open simultaneously as part of an avalanche. For
ample, the branch (2,2) opens simultaneously with its pa
(1,1) in Figs. 8~c! and 8~e!. For a branch (i , j ) on the active
surface, the threshold pressurepi , j is greater than the open
ing pressure of its parentf i 21,[ j /2] , since this is precisely the
condition that stops an avalanche and produces the ac
surface. Thus according to Eq.~13!, the opening pressure
f i , j5pi , j , which is greater than the opening pressure of
parent,f i 21,[ j /2] . For example, the branch (3,5) does n
open simultaneously with its parent (2,2) but at a high
opening pressure@Fig. 8~f!#.

4. Transients

The threshold pressurespi , j are assigneda priori and rep-
resent the quasistatic opening pressures of the airways. H
ever, during fast dynamic openings within an avalanche,
actual threshold pressures and the pressure difference a
the segment could be different from their static counterpa
In particular, crackles which accompany airway openin
cause an instantaneous increase inDP. We therefore replace
the step functionQ(P2pi , j ) by a more general function
Fi , j (P)[F(P,pi , j ,f i 21,[ j /2]), which is also a step function
whose argument depends on the opening pressure of the
ent (i 21,@ j /2#) in addition to the pressureP and the thresh-
old pressurepi , j . Thus we rewrite Eq.~11! as

j i , j5Fi , j~P!j i 21,[ j /2] . ~14!

The exact form ofFi , j (P) depends on the model of airwa
opening considered.

t

2-5
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B. Analytical solution

Equation ~14! recursively expresses the state of airw
( i , j ) in terms of the state of its parent. By iterating Eq.~14!,
we write the nonrecursive form as

j i , j5Fi , j Fi 21,[ j /2]•••F0,0j0,05 )
(k,l )PPi , j

Fk,l~P!, ~15!

sincej0,051 as the root is always open. Thus a branch (i , j )
is open if and only if all branches along the pathPi , j con-
necting it to the root of the tree are open.

1. Airway tree partitioning

We can now calculate the fraction of open air sacs a
given pressure. Since each terminal airway subtends on
sac, the total number of air sacs in the lung is equal tonT ,
the number of terminal airways. An air sac is open if t
terminal airway connected to it is open, and the fraction
open air sacsf a is given by

f a5
1

nT
(

( i , j )PL
j i , j , ~16!

where the sum(j i , j gives the number of open leaves of th
tree. To compare our results with experimental data, i
necessary to average over all configurations of thresh
pressurespi , j . Using Eq. ~16!, the averaged quantitŷf a&
can be written as

^ f a&5
1

nT
E Dpr~p!F (

( i , j )PL
j i , j G , ~17!

where

E Dp r~p![E
2`

`

dp0,0 r0~p0,0! . . . E
2`

`

dpi , jr i~pi , j !•••

represents an integration over all possible values of
threshold pressures of every branch in the tree. We note
since the distributionsr i(pi , j ) are normalized, each of th
bare integrals *dpi , j r i(pi , j )51 and their product
*Dpr(p)51. Thus the expression in Eq.~17! is self-
normalized. Reversing the order of the commutative ope
tions of integration and summation, we get

^ f a&5
1

nT
(

( i , j )PL
E Dpr~p!j i , j ,5

1

nT
(

( i , j )PL
^j i , j&.

~18!

Thus, Eq.~18! partitions the averaged fraction of open a
sacs in the tree into a normalized sum of probabilities of
existence of open paths from the terminal branches to
root of the tree.

2. Opening probabilities

The state variablej i , j is a product of terms that are func
tions of the threshold pressures of all branches along the
Pi , j and the external pressureP, as expressed by Eq.~15!.
03191
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Since the distribution functionsr only depend on the gen
eration number, the averaged quantity^j i , j& depends only on
the external pressureP and the generation numberi. We
defineG i(P)[^j i , j&, which is the opening probability of a
branch (i , j ) at pressureP, so Eq.~18! can be rewritten as

^ f a&5
1

nT
(

( i , j )PL
G i~P!.

Collecting all terminal branches of the same generationn, we
can rewrite the above sum as

^ f a&5(
n

P~n!Gn~P!, ~19!

whereP(n) is the distribution of generation numbersn of
the terminal branches, i.e., the fraction of terminal branc
with generation numbern.

Equation~19! conveniently separates the effects of mo
phological features of the tree structure in a lung, given
the distribution of terminal depthsP(n), from the dynamic
component described by the opening probabilityGn(P). This
allows us to calculateP(n) from models of tree structure
andGn(P) from models of different dynamical processes
a much simpler geometry.

We note that for a symmetric tree, all terminal branches
the same generationN and thus the generation distributio
PS of the terminal branches for a symmetric tree is given

PS~n!5dn,N .

Using Eq.~19!, the fraction of open air sacs^ f a
S& for a sym-

metric tree can be calculated as

^ f a
S&5GN~P!. ~20!

Thus Eq.~19! allows us to use the results obtained for sy
metric trees and translate them to asymmetric trees with
ferentP(n).

3. The P-V curve

We can now write a comprehensive expression for
volumeV of the lung as a function of pressureP. Using the
expressions of Eqs.~5! and~8! and replacingf a by ^ f a&, we
get

V~P!5VE~P! ^ f a&,

which can by expanded using the result of Eq.~19! as

V~P!5VE~P!(
n

P~n! Gn~P!. ~21!

Although the expression in Eq.~21! was obtained for a
binary tree, it is equally applicable to trees of different, ev
heterogeneous, branching. Thus in Sec. IV we calcu
Gn(P) for various models on linear chains ofn generations
and apply those results to the asymmetric airway tree.
2-6
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IV. MODELS OF AIRWAY OPENING

We consider a linear chain ofN closed branches labele
j 51, . . . ,N. The internal pressure in the pipe is 0 while
external pressure,P, is applied at one end (j 50). The quan-
tity of interest in this case isGN(P), which is defined as the
probability of fluid flow in a pipe withN closures at pressur
P. For end-to-end fluid flow, we need all theN closures to be
open at the given pressureP. At pressureP50, all closures
are closed and hence the probability of flowGN(0)50.

We define a probability density functionc j (f) such that
c j (f) df is the probability for closurej to have an opening
pressure betweenf and f1df. A function Gj (f8uf) can
then be defined as a conditional probability that the bra
( j 11) has an opening pressure betweenf8 and f81df8,
given that thej th closure opens between pressuresf and
f1df. This allows us to write

c j 11~f8!5E
0

1

dfGj~f8uf!c j~f!. ~22!

We note that there is a one-to-one correspondence betw
the conditional probabilitiesG(f8uf) and the opening func
tions Fi , j (P). Defining either of these two functions com
pletely defines the dynamics of the system.

To calculatec j , we need an initial state, which can b
calculated by defining a hypothetical closure atj 50 and
assuming that this closure is permanently open, that is,f0
50. Thus,

c0~f!5d~f!. ~23!

The opening probability,GN(P), can thus be written as

GN~P!5E
0

P

df cN~f!. ~24!

In the following subsections, we define three spec
models of airway openings, construct their respective con
tional probabilities G(f8uf), and calculate the openin
probabilityGN(P). The first, modelA, describes the simples
process of avalanching. ModelsB and C add the effect of
transients, especially crackles, to the opening process
modifying the threshold pressures of the segments per
nently or temporarily. Pressures are normalized such tha
maximum threshold pressureP0 in the tree is 1. In all three
models we assume that the threshold pressure distribu
r(p) is uniform between 0 and 1. These models then all
us to fit the experimentalP-V curve using Eq.~21!.

A. Model A: Simple avalanching

This is the simplest model of airway opening. To co
structG(f8uf), we look at the processes by which a bran
opens. If the opening pressuref8 of the (j 11)th branch is
less than that of thej th branch,f, the branch (j 11) will
open simultaneously with the branchj as a part of an ava
lanche. We could thus writeG for this part asfd(f82f),
where the factorf is numerically the probability thatf8 is
less thanf, since the distribution of threshold pressures
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uniform. Thed function reflects the fact that the (j 11)th
branch opens at the same pressure as thej th one. However, if
f8 is greater thanf, the (j 11)th branch will open indepen
dently andG will contain a termQ(f82f), Q being the
unit step function, reflecting the ordering of the openi
pressures. The functionG is thus given by

GA~f8uf!5fd~f82f!1Q~f82f!. ~25!

Using Eqs.~23! and ~25! and by repeated application o
Eq. ~22!, we find

c j
A~f!5 j f j 21. ~26!

Thus using Eq.~24!, we are able to derive the opening pro
ability as

GN
A~P!5PN. ~27!

This is identical to the expression in Eq.~1! that can be
derived using other methods@26–28#.

B. Model B: Permanent effect of pressure wave

In this case we slightly alter the algorithm for the chan
of state of a closure. In addition to opening only when t
pressure across the closure exceeds its threshold pressur
take into account the added effect of a pressure wave. W
closurej opens, a pressure wave is set up in the fluid wh
facilitates the opening of closure (j 11). We take this into
account by changing the opening pressure of the closurj
11) as

f j 11→af j 11 , ~28!

where,a (,1) is a constant. In this model, the reduction
the threshold pressure is permanent, i.e., once a parent o
the threshold pressure of the child, it is maintained at
reduced level for the duration of the experiment. Thus for
practical purposes, the threshold pressures of all genera
greater than 1 are distributed uniformly between 0 anda
while that of the first generation is distributed between 0 a
1 ~as it cannot be opened in the wake of the pressure w
from the parent!.

We can then modify Eq.~25! to write the function
GB(f8uf) for modelB as

GB~f8uf!5
f

a
Q~a2f!d~f82f!1

1

a
Q~a2f8!

Q~f82f!1Q~f2a!d~f82f!. ~29!

The first term again represents the avalanche part of
closure opening, but in this case the renormalization of
opening (f) increases the probability factor by 1/a. A step
function is also included, which distinguishes the behavior
the closures for pressures less thana from the automatic
opening at pressures greater thana. The second term repre
sents the independent opening of a closure and the prob
ity is again rescaled by a factor 1/a. The two step functions
in this term not only reinforce the distinction in the first pa
2-7
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but also restrict the possible values off8 to less thana. The
final term is included to take into account the automa
opening of the closures at pressures greater thana.

Using the result of Eq.~29! in Eq. ~22! and the initial
condition from Eq.~23!, we can derive

c j
B~f!5 j S f

a D j 21

Q~a2f!1Q~f2a!. ~30!

Again the fluid flow probability can be derived using E
~24! as

GN
B~P!5PS P

a D N21

Q~a2P!1PQ~P2a!. ~31!

C. Model C: Transient effect of pressure wave

The depression of the opening pressure due to the p
sure wave in modelB @Eq. ~28!# is a permanent phenom
enon. This means that once the threshold is lowered by
pressure wave, it does not regain its original value. Thus
thresholds after the first one are distributed between 0 ana
and not between 0 and 1. However, apart from this ren
malization, there is very little that is different between mo
els A and B. We shall now try to explore a more intricat
model in which the reduction of opening pressure is onl
temporary phenomenon and the threshold regains its orig
value after a short time, unless the closure is opened
stantly. We shall deal only with instantaneous reduction
the threshold, which facilitates the avalanchelike opening
the closure but has no effect on the independent chang
state.

The conditional probabilityGC(f8uf) for this model is
given by

GC~f8uf!5
f

a
Q~a2f!d~f82f!1Q~a2f!QS f82

f

a D
1Q~f2a!d~f82f!. ~32!

As mentioned earlier, the process of avalanching in t
model is identical to modelB and thus the first term ofGC is
identical to that in Eq.~29!. However, the second term, de
scribing independent opening, is markedly different in t
case. Not only is there no rescaling of the opening press
in this event, there is also the absence of the restricting
function onf8. Thusf8 can now take values greater thana
and give rise to delayed large avalanches. The final term
again identical to that in Eq.~29!. This is because at pres
sures greater thana all closures are opened in large av
lanches.

Equation~32! can now be used to solve for the probabili
density function,c j

C(f), which is given by

c j
C~f!5Aj~a!f j 21Q~a2f!

1F11 (
k51

j 21

Bk~a!fkGQ~f2a!, ~33!

where
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Aj~a!5)
k51

j S 1

a
1

ak

k D ,

Bj~a!5Aj 21~a!S a j

j D ~34!

for j >1, andA0(a)5B0(a)51.
Upon integrating Eq.~33! with respect tof, we get

GN
C~P!5AN21~a!S PN

N DQ~a2P!1GN
C.~P!Q~P2a!,

~35!

where

GN
C.~P!5BN~a!1 (

k50

N21
Bk~a!

k11
~Pk112ak11!. ~36!

The opening probabilityGN and the distributionc of
opening pressuresf for the three models are compared
Fig. 10. The distributionc for modelC @Fig. 10~a!# is visu-
ally similar to the distributions obtained from experimen
data~Fig. 5!. We note thatGN is identical to the open fraction
in a symmetric tree@Eq. ~20!#. Thus for the same maximum
threshold pressure and number of generations, modelsB and
C recruit more air sacs than the simple avalanching modeA
@Fig. 10~b!#.

We can construct more sophisticated models of airw
opening by extending these basic models. The pressure w
could have a partly instantaneous and partly permanent e
on f by combining modelsB andC. The parametera could
be distributed instead of being a fixed number. The thresh
pressure distributions could be made nonuniform as wel

FIG. 10. ~a! The distributionc(f) of opening pressuresf and
~b! the opening probabilityG(P) of an airway as obtained from th
three models of airway opening (A, B, andC) for a chain of six
branches and witha50.75 for modelsB andC.
2-8
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FLUID TRANSPORT IN BRANCHED STRUCTURES WITH . . . PHYSICAL REVIEW E67, 031912 ~2003!
generation-dependent. In each case, the technique desc
in this section could be used to obtain an analytical solut
for c(f) and GN(P). These results can then be combin
with a distribution of generation numbers of termin
branchesP(n) and the elasticP-V curve VE(P) to obtain
the final pressure-volume relationship of the lung.

V. FITTING EXPERIMENTAL DATA

We fit the f v(P) curves obtained from experimental da
~Fig. 4! with polynomial functions(nan(P/P0)n up to the
inflection point P3 in the curves. The maximum thresho
pressureP0 is given by the pressure above which a
branches are open and thusf v51. The inflection points in
the curves are determined by numerically differentiating
curves forf v and finding the first maxima. For modelA, we
determineP0 by fitting the curve up toP3 and extrapolating
it to f v51. For modelC, P3 represents the point of cross
over from avalanchelike behavior to pressure-wave media
behavior and thus the parametera5P3 /P0.

We use polynomials of order 48, since this is the kno
maximum depth in a dog lung@32#. The large number of
coefficients makes simple regression unstable, and we us
additive diagonal term in the coefficient matrix to regulari
the results. The raw fit thus obtained is then fine-tuned
randomly updating each coefficient by a small amount a
recalculating the fitting errors simultaneously in the norm
and logarithmic scales, to ensure the accuracy of the co
cients for smalln.

For modelA, f v is given by using Eqs.~19! and ~27! as

^ f v
A&5(

n
P~n!S P

P0
D n

~37!

and the coefficients of the fitted polynomialan5P(n), the
distribution of terminal generations. For modelB, the expres-
sion for f v for pressures less thana is given by

^ f v
B&5(

n

P~n!

an21 S P

P0
D n

~38!

and the distribution can be calculated from the polynomia
asP(n)5anan21. Similarly, for modelC, the f v is given by

^ f v
C&5(

n
P~n!

An~a!

n S P

P0
D n

~39!

for pressures up toa. Thus, the distribution of generatio
numbers of the terminal segments can be estimated
P(n)5nan /An(a).

For modelsB and C, we fit the regionP.a using the
expressions forGn(P) in this region as given by Eqs.~31!
and~35! and the sameP(n) as obtained by fitting the regio
P,a. The fitted curves forf v using modelsA andC for lobe
A are displayed in Fig. 11~a!. The distributionP(n) obtained
using modelC is shown in Fig. 11~b!.

The distributionP(n) in Fig. 11~b! has two distinct re-
gions, a narrow peak forn,5 ~shown as open rectangle!
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and a broad distribution for 15,n,40 ~shown as filled rect-
angles!. The second part of the distribution has two ma
peaks in the region 22,n,30.

We compareP(n) to a known model for the airway tre
structure, the Horsfield model@32#, which is an asymmetric
self-similar description of averaged experimental data
tained by physical measurements on a polymer cast of
airway tree. The Horsfield distribution corresponds in sha
and position with theP(n) obtained by fitting theP-V data.
We are able to recover the two main peaks at approxima
their correct positions. The small-n part of the distribution
(n,5) that we obtain from our data does not correspond
the branching structure of the tree since the dog lung is
known to have terminals with depthsn,13.

We attribute the existence of the small-n part of P(n) to
the airway wall elasticity and the volume of air contained
the airways before any air sacs open~Appendix A!. The first
few branches of the airway tree are held open by cartila
nous rings, and the expansion of these branches at lowP also
contributes to the small-n part of P(n). We ignore this re-
gion when focusing on the branching structure and norma
the Horsfield model to only the area under the second pa
the distribution. The Horsfield model is an idealized descr
tion of the dog lung and does not account for the differen
between individual dogs. In contrast, with our approach
can also identify the variation in structure among spec
samples.

Finally, using Eq.~5!, we combine the effect of elasticity
to obtain the fullP-V curves of our models using the expre

FIG. 11. ~a! The volume fractionf v of the open air sacs obtaine
using modelsA andC obtained by fitting the experimental data fo
lobeA and~b! the distributionP(n) of the generation numbersn of
the terminal branches obtained from the fit, compared to the di
bution for the Horsfield model of the dog lung.
2-9
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MAJUMDAR et al. PHYSICAL REVIEW E 67, 031912 ~2003!
sion for VE(P) from Eq. ~4! along with the parameters ob
tained from the fits shown in Fig. 3. Figure 12~a! compares
the distribution of opening pressures using modelC with that
obtained using the experimental data. The resultingP-V
curves are compared in Fig. 12~b!.

TheP-V curve of modelC has a small deviation from th
experimental curve near the maximum threshold press
@Fig. 12~b!# due, we believe, to an underestimation of t
maximum threshold pressure, i.e., the pressure at which
airways are opened. Our assumption that the maxim
threshold pressure of the branches corresponds to the
sure at the point of inflection is only true when the distrib
tion of threshold pressures is uniform and generati
independent. However, if the threshold pressures
generation-dependent, our method underestimates the m
mum threshold pressure@27,48#. To estimate the effect o
generation dependence, we simulated inflation of rando
branched trees using a simple generation-dependent th
old pressure distribution with overlapping domains. W
found that the inflection point shifts to a pressure sma
than the maximum threshold pressure, independent of
exact distribution or the degree of randomness in branch
The high pressure in this region would allow a more sign
cant contribution from the opening of the deeper air sacs@Eq.
~21!#, which we are unable to probe accurately. However
real lungs, these air sacs (n.30) are few in number@Fig.
11~b!# and do not contribute significantly to the shape of t
P-V curve.

VI. CONCLUSION

In conclusion, we have derived a general theory for q
sistatic fluid flow through collapsible bifurcating structure

FIG. 12. ~a! The distributionc(f) of opening pressuresf using
modelC compared to the experimental data from lobeA and~b! the
full P-V curve reconstructed using Eq.~3! and modelC, compared
to the experimentally obtained data.
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We show that while calculating the pressure-volume curve
analogous average descriptions of fluid transport, the c
plex branching structure can be partitioned into a linear
perposition of one-dimensional chains. Using this result
constructed a comprehensive model of the lungP-V curve
based on the topology of the lung airway tree, the elastic
of the lung tissue, and the mechanisms of airway openin
We have shown that transient pressure waves during the
cess of airway openings significantly affect the shape of
P-V curve. Although the fullP-V curve is a result of the
combination of influences, we have been able to separate
effect of each of these factors using a single measurem
The resulting method also provides an estimate of the dis
bution of the generation number of the terminal branches
the airway tree, or the depth of the air sacs in the lung. Si
the estimated distributions compare favorably to availa
morphological data, our approach should be useful in clini
situations as well as in developmental studies. In general,
results, particularly those involving tree partitioning and t
general solution of the opening process, are equally ap
cable to other physical systems involving transport in asy
metrically branched structures.

ACKNOWLEDGMENTS

This study was supported by NSF~BES-0114538! and
Hungarian Scientific Research Fund Grant No. OTK
T-30670. H.E.S. was supported in part by the NIH Center
Research Resources~P41RR13622!.

APPENDIX A: VOLUME OF AIRWAYS

We can calculate the contribution of airways to the to
volume of the lung using Eq.~19!. Assuming each airway is
a cylinder whose radiusr i and length, i are exponential
functions of generation numberi @1#,

r i5b i r 0 , ~A1a!

,i5g i,0 , ~A1b!

the volume of an airway (i , j ) can be written as

v i5pr i
2,i5k iv0 , ~A2!

wherek5b2g andv0 is the volume of the root branch. Fo
a symmetric tree, there are 2i branches at thei th generation
and the opening probability of each of them isG i(P). As-
suming that the elasticity of airways is identical to that of
sacs, the averaged total volumeVb of open airways is thus
given by

Vb}VE~P!(
n

2nvnGn~P!}VE~P!v0(
n

~2k!nGn~P!.

~A3!
2-10
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If 2g,1, most of the contributing volume toVb comes from
the smalln region where the branching is symmetric. T
maximum airway volumeVb,max can be approximated as th
Vb for an infinite tree with all branches open. Thus,

Vb,max}
v0

122k
V0 . ~A4!

Thus the relative volume of the airways is given by
,

-

rt

re

V.
ev

al

C.

J.

03191
Vb

Vb,max
5~122k!

VE~P!

V0
(

n
~2k!nGn~P!. ~A5!

We note that if the volume of air sacsVb is allowed to
contribute to the total volume of the lungV(P), the terms in
the expansion with respect toGn decay exponentially and ar
only significant for small values ofn, as can seen from the
open boxes in Fig. 11~b!.
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